
# MDS3 SOLENOID OPERATED SWITCHING VALVE SERIES 10

## MODULAR VERSION ISO 4401-03 (CETOP 03)

p max 350 barQ max 50 l/min

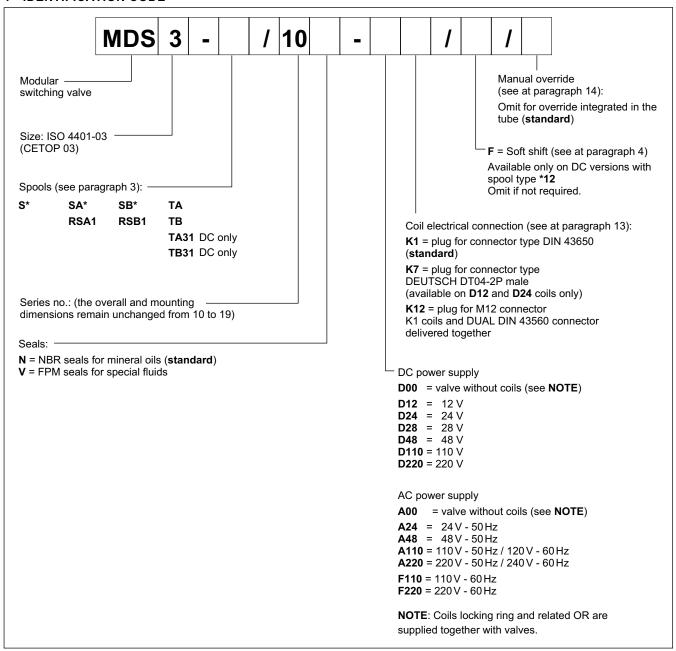


#### **OPERATING PRINCIPLE**



- The MDS3 valve is used to switch multiple flow directions, or to select pressure values. Application examples can be seen at paragraph 15.
- The oil passage holes pass right through the entire valve body and due to this particular design feature, the MDS3 can be assembled with all ISO 4401-03 (CETOP 03) modular valves).
- The special connection of the valve in parallel to the P T
   A B lines of the circuit allows easy construction of differents hydraulic configurations, reducing pressure drops to a minimum.
- Soft-shift feature available for some DC versions.

#### $\textbf{PERFORMANCES}\,$ (obtained with mineral oil with viscosity of 36 cSt at 50°C )


| Max operating pressure: P - A - B ports T port (DC version) T port (AC version) | bar                                       | 350<br>210<br>140 |  |
|---------------------------------------------------------------------------------|-------------------------------------------|-------------------|--|
| Maximum flow on P - A - B ports                                                 | l/min                                     | 50                |  |
| Ambient temperature range                                                       | °C                                        | -20 / +50         |  |
| Fluid temperature range                                                         | °C                                        | -20 / +80         |  |
| Fluid viscosity range                                                           | cSt                                       | 10 ÷ 400          |  |
| Fluid contamination degree                                                      | According to ISO 4406:1999 class 20/18/15 |                   |  |
| Recommended viscosity                                                           | cSt                                       | 25                |  |
| Mass: double solenoid single solenoid                                           | kg                                        | 2<br>1,5          |  |

41 251/211 ED 1/8

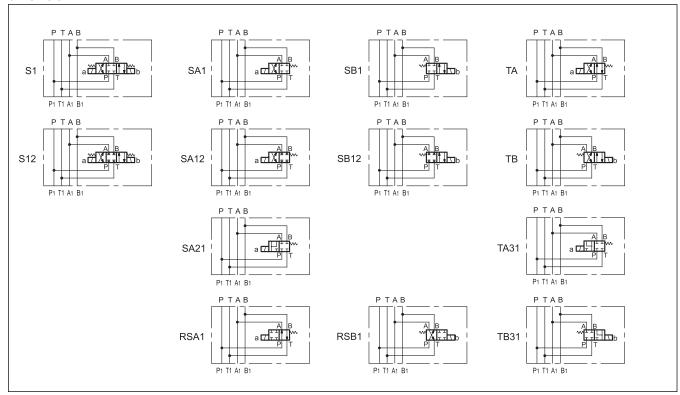


MDS3 SERIES 10

#### 1 - IDENTIFICATION CODE



#### 2 - HYDRAULIC FLUIDS


Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

41 251/211 ED **2/8** 



#### 3 - SPOOL TYPE



#### 4 - SOFT SHIFT

At now the soft shift feature is available only on DC valves with S12, SA12 and SB12 spools.

This feature enables hydraulic actuators to perform a smooth start and stop by reducing the speed of movement of the valve spool. The shifting time and characteristics curves, are influenced by the viscosity (and thus by the temperature) of the operating fluid. Moreover, times can vary according to the flow rate and operating pressure values of the valve.

For the correct work of the soft-shift device, ensure that the solenoid tubes are always filled with oil. For this purpose, we recommend to install a backpressure valve set at 1 ÷ 2 bar on T line.

5 - PRESSURE DROPS Δp-Q

**6 - OPERATING LIMITS** 

**SOON AVAILABLE** 

**SOON AVAILABLE** 

7 - SWITCHING TIMES

**SOON AVAILABLE** 

41 251/211 ED 3/8





#### 8 - ELECTRICAL FEATURES

#### 8.1 Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated to suit the available space.

#### Protection from atmospheric agents CEI EN 60529

| Connector            | IP 65 | IP 67 | IP 69 K |
|----------------------|-------|-------|---------|
| K1 DIN 43650         | x (*) |       |         |
| K7 DEUTSCH DT04 male | х     | х     | x (*)   |
| K12 DUAL DIN 43650   | х     | x (*) |         |

(\*) The protection degree is guaranteed only with the connector correctly connected and installed

| ± 10% Vnom         |
|--------------------|
|                    |
| 18.000 ins/hr      |
| 10.000 ins/hr      |
| 100%               |
| In compliance with |
| 2004/108/CE        |
| In compliance with |
| 2006/95 CE         |
|                    |
| class H            |
| class F            |
|                    |

**NOTE**: In order to further reduce the emissions is recommended the use of type H connectors. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

#### 8.2 Current and absorbed power for DC solenoid valve

The table shows current and power consumption values relevant to the different coil types

The rectified current supply takes place by fitting the valve (with the exception of D12 coil) with an alternating current source (50 or 60 Hz), rectified by means of a bridge built-in to the "D" type connectors (see cat. 49 000), by considering a reduction of the operating limits.

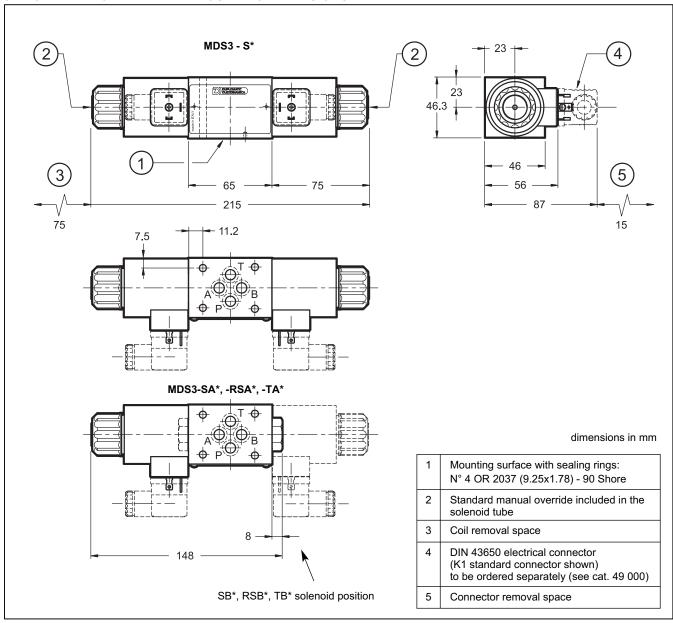
#### Available DC coils (values ±5%)

|      | Nominal        | Resistance     | Current          | Power           | Coil    | code    |
|------|----------------|----------------|------------------|-----------------|---------|---------|
|      | voltage<br>[V] | at 20°C<br>[Ω] | consumpt.<br>[A] | consumpt<br>[W] | K1      | K7      |
| D12  | 12             | 4,4            | 2,72             | 32,6            | 1903080 | 1902940 |
| D24  | 24             | 18,6           | 1,29             | 31              | 1903081 | 1902941 |
| D28  | 28             | 26             | 1,11             | 31              | 1903082 |         |
| D48  | 48             | 78,6           | 0,61             | 29,3            | 1903083 |         |
| D110 | 110            | 423            | 0,26             | 28,6            | 1903084 |         |
| D220 | 220            | 1692           | 0,13             | 28,6            | 1903085 |         |

#### 8.3 Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

#### Available AC coils (values ± 5%)

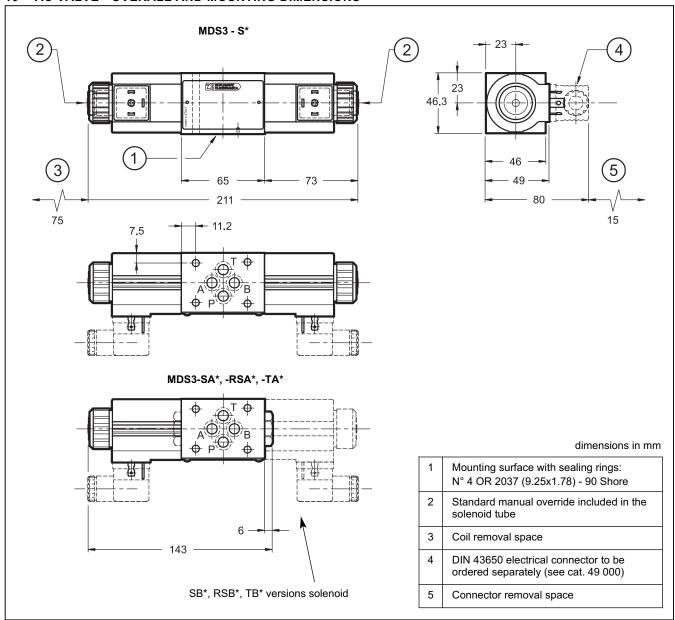

|        | Values 1                  | ,,,,          |                                    |                                            |                                             |                                           |                                   |                            |
|--------|---------------------------|---------------|------------------------------------|--------------------------------------------|---------------------------------------------|-------------------------------------------|-----------------------------------|----------------------------|
| Suffix | Nominal<br>Voltage<br>[V] | Freq.<br>[Hz] | Resistance<br>at 20°C<br>[Ω] (±1%) | Current<br>consumption<br>at inrush<br>[A] | Current<br>consumption<br>at holding<br>[A] | Power<br>consumption<br>at inrush<br>[VA] | Power consumption at holding [VA] | Coil<br>Code<br>K1 and K12 |
| A24    | 24                        | 50            | 0.88                               | 8.7                                        | 2.35                                        | 209                                       | 56.5                              | 1902660                    |
| A48    | 48                        | 50            | 3.2                                | 4.5                                        | 1.25                                        | 216                                       | 60                                | 1902661                    |
| A110   | 110V-50Hz                 |               | 17.5                               | 1.9                                        | 0.48                                        | 209                                       | 52.8                              | 1902677                    |
| AIIU   | 120V-60Hz                 | 50/60         | 17.5                               | 1.8                                        | 0.45                                        | 216                                       | 54                                | 1902077                    |
| A220   | 220V-50Hz                 | 30/60         | 70                                 | 0.95                                       | 0.23                                        | 209                                       | 50.6                              | 1902678                    |
| AZZU   | 240V-60Hz                 |               | 70                                 | 0.87                                       | 0.21                                        | 209                                       | 50.4                              | 1902076                    |
| F110   | 110                       | 60            | 15                                 | 2                                          | 0.5                                         | 220                                       | 55                                | 1902680                    |
| F220   | 220                       | υU            | 60                                 | 1                                          | 0.26                                        | 220                                       | 57.2                              | 1902681                    |

41 251/211 ED 4/8



## MDS3 SERIES 10

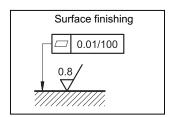
#### 9 - DC VALVE - OVERALL AND MOUNTING DIMENSIONS




41 251/211 ED 5/8



## MDS3 SERIES 10


#### 10 - AC VALVE - OVERALL AND MOUNTING DIMENSIONS



#### 11 - INSTALLATION

The valve can be mounted in any position. Valve fixing takes place by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

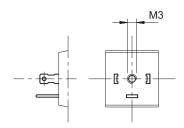
If the minimum values of planarity and/or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.



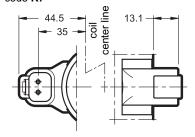
#### 12 - ELECTRIC CONNECTORS

The solenoid operated valves are delivered without connector, except the version K12, where the connector is delivered together with the valve. For coils with standard electrical connections K1 type (DIN 43650) the connectors can be ordered separately. For the identification of the connector type to be ordered please see cat. 49 000.

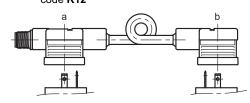
For the K7 connections the relative connectors are not available.


41 251/211 ED 6/8

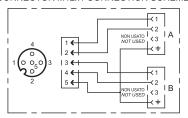



# MDS3

#### 13 - ELECTRIC CONNECTIONS


connection for DIN 43650 connector type code **K1** (**standard**)




connection for DEUTSCH DT04-2P male connector type code **K7** 



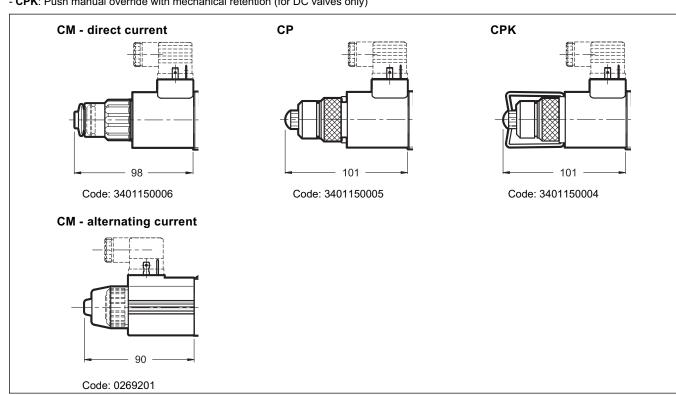
connection for DUAL DIN 43650 connector type code **K12** 



CONNECTOR M12x1 CONNECTION SCHEME



In K12 version the valve will be delivered together with the connector DUAL DIN 43650 with M12 connection already mounted on K1 coils. DUAL DIN connector allows you to power two solenoids with a single cable with socket M12.


NOTE: The mere connector type K12 (DUAL DIN) spare part can be ordered with the code 0672136.

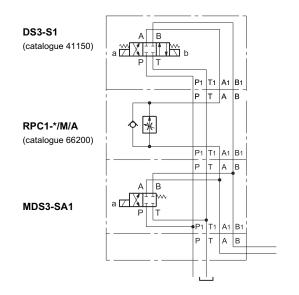
#### 14 - MANUAL OVERRIDES

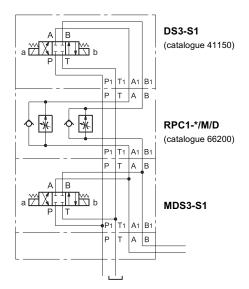
The standard valve has solenoids whose pin for the manual operation is integrated in the tube. The operation of this control must be executed with a suitable tool, minding not to damage the sliding surface.

Three different manual override version are available upon request:

- CM: manual override boot protected
- CP: Push manual override (for DC valves only)
- CPK: Push manual override with mechanical retention (for DC valves only)




41 251/211 ED **7/8** 




#### 15 - APPLICATION EXAMPLES

Example of circuit used to drive working units with fast approach, adjustable working speed and fast return.

Example of circuit used to drive working units with fast approach and adjustable working speed in both directions.







DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Fax +39 0331.895.339

 $www. duplomatic.com \bullet e\text{-mail: sales.exp@duplomatic.com}$